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The cyclic evolutions and associated geometric phases induced by time-indepen- 
dent Hamiltonians are studied for the case when the evolution operator becomes 
the identity (those processes are called evolution loops). We make a detailed 
treatment of systems having equally-spaced energy levels. Special emphasis is 
made on the potentials which have the same spectrum as the harmonic oscillator 
potential (the generalized oscillator potentials) and on their recently found 
"coherent" states. 

Since the appearance of Berry's (1984) work, much effort has been 
spent in studying geometric aspects of nonrelativistic quantum mechanics 
(Simon, 1983; Aharonov and Anandan, 1987; Anandan, 1988; Samuel and 
Bhandari, 1988; Anandan and Aharonov, 1990; Bohm et al., 1991; Boya et 
al., 1991). In particular, to any cyclic evolution of the vector state, 
IO('C) ) ei4~lO(O ) ) ,  there has been associated a geometric phase 

fl = 4) + h -~ (O(t)]H(t)]O(t)) dt (1) 

where z is the period of 10(t))~Jcf, (0(t)[O(t)) = 1, ~b ~It., 24f is the Hilbert 
space of vector states of the system, and H(t) is the Hamiltonian 
(Aharonov and Anandan, 1987). /3 describes global "curvature effects" 
arising on the space of physical states, which is the projective space 
formed by the rays or the density operators 10)<01 instead of ~ .  Due to 
this curvature, the horizontal lifting (parallel transport) of the closed 
trajectory 10(t) ><0(t) l ~  leads to a trajectory [On(t)) which is, in general, 
open on ~f~. The holonomy of this lifting is the Aharonov-Anandan 
geometric phase factor e i~. 
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The phase fl, determined up to a multiple of 2n, generalizes the Berry 
phase, which originally was defined just for adiabatic cyclic evolutions 
(Berry, 1984). Further generalizations of fl have been designed and can be 
found in the literature (Aharonov and Anandan, 1987; Samuel and Bhan- 
dari, 1988; Anandan and Aharonov, 1990). There is also a lot of work 
dealing with the calculation of the geometric phases when the Hamiltonian 
is time dependent [either explicitly or implicitly through certain sets of 
time-dependent parameters (Layton e t  aL, 1990; Moore and Stedman, 
1990; Moore, 1991; Fernandez C. et al., 1992a,b; Fern~indez C. and Bret6n, 
1993; Seleznyova, 1993; Soiem and Biedenharn, 1993; Campos et al., 
1993)]. In this paper, we will address the study of the geometric phases 
when the Hamiltonian is time independent, i.e., H ( t ) =  H. This choice is 
done because, it seems to us, there is a widespread belief that the geometric 
phases appear only when the Hamiltonian is time dependent, which is 
wrong. This, perhaps, is motivated by the historical development of the 
subject and the following reasoning: the eigenstates IEn) of H evolve 
according to I En(t)) = e -  iE, ,/hlE " ), where the E, are the energy eigenvalues 
and n denotes a set of discrete subscripts. These evolutions are cyclic with 
period (arbitrary) T and ~b = - E , z / h .  Therefore, from (1), fl = 0 for these 
states, and as usually the only cyclic states at hand for these systems are the 
eigenstates of the Hamiltonian, one is led to the wrong conclusion stated 
above. However, Aharonov and Anandan (1987) found nonnuU geometric 
phases for a spin 1/2 in a constant homogeneous magnetic field. The same 
will be true for any other two-level system described by a time-independent 
Hamiltonian (Moore, 1991; Seleznyova, 1993). For nonspin systems it is 
possible to prove the existence of nontrivial geometric phases for the 
harmonic oscillator (Seleznyova, 1993; Benedict and Schleich, 1993) and 
some other physically interesting models [such as the localized states of an 
electron on a crystal (Seleznyova, 1994)]. 

For independent reasons, in order to be used as the starting point for 
the techniques of "controlling" and "manipulating" the quantum systems, 
evolution loops (EL) were proposed (although without this name at that 

t ime) in Mielnik (1977) and further developed by him (Mielnik, 1986). 
Those loops are specific dynamical processes induced either by time-depen- 
dent (Mielnik, 1977, 1986; Fernandez C. and Mielnik, 1993), or time- 
independent (Fernandez C., 1992) Hamiltonians, for which the evolution 
operator U(t) becomes the identity 1 (modulo a phase) for a certain time 
z > 0, i.e., 

U(z) = ei~l (2) 

where U(0)=  1 (see also Nieto and Gutschick, 1981). The EL are useful 
because when perturbed by some additional external fields, the system can 
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be driven to attain any desired unitary operation on ~ due to the 
accumulation of the small precessions of the distorted loop (Mielnik, 1977, 
1986; Fern/mdez C. and Mielnik, 1994). In the context of geometric phases 
a system performing an evolution loop is very interesting because any state 
becomes cyclic at t = r: 

I~,(z) ) = e;el~b(0) ) (3) 

Therefore, it could (we will show) have an associated nonnull geometric 
phase. We will restrict ourselves in this paper to the evaluation of the 
geometric phases associated to an evolution loop when the Hamiltonian is 
time independent. 

Suppose one has a system with a time-independent Hamiltonian H 
whose evolution operator performs an evolution loop. Hence, any vector 
state I~,(t)> comes back to itself at t = z [see equations (2) and (3)] and its 
geometric phase can be easily evaluated because the evolution operator 
U(t) = e--iHt/h commutes with H: 

[3 = c~ + h -1 (~k(O)IUt(t)HU(t)IO(O)) dt = ~ + h - l z ( H )  (4) 

where (H)=<g,(0)l/-/l~,(0)>. Expressing I~b(0)) in terms of the basis 
{[Em)}, [~,(O)>=Y, mcmlEm>, with Cm = (Em[~'(0)), we find that (4) be- 
comes 

[3 = h-l  E Icml=E  (5) 
m 

Note that formulas (4)-(5) are applicable to the cyclic evolution of a 
vector state induced by any time-independent Hamiltonian regardless of 
whether or not the system performs an evolution loop. However, if the 
system has an evolution loop, then (4)-(5) will be valid for any initial 
condition. In particular, for I~(0) )=  [En ), i.e., C m = 6 n m  , it turns out that 
c~ = - E n z / h ,  and hence/~ = 0. If at least two cm's are distinct from zero, 
however, the /~ associated to the corresponding cyclic state will be, in 
general, nontrivial (Moore, 1991, Section 3.1). 

There are in the literature some interesting systems whose time-inde- 
pendent Hamiltonian induces evolution loops (Seleznyova, 1993; Benedict 
and Schleich, 1993; Fern~mdez C., 1992; Nieto and Gutschick, 1981). Here, 
we will show the existence of an evolution loop for Hamiltonians whose 
spectrum consists of equally spaced energy levels of the form 

En = Eo + n A E  (6) 

where AE > 0 is the constant spacing between the levels and Eo is the 
energy of the ground state. The subscript n e Z  + takes values in [0, N], 
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where N is finite if ~ is finite-dimensional or infinite if ~ is infinite-dimen- 
sional. The evolution operator of this system reads 

N 

U(t) = ~ e-iE~ t/~lE n)(E~[ (7) 
n = 0  

It is easy to see that the evolution loop is present at z = 27zh/AE: 
N 

U(z) = ~ e -i2r~(E~ +"ae)/'XelE,, )(En[ = e -i2nE~ (8) 
n = 0  

By comparing with (2), we obtain ~b = -27cEo/AE. Moreover, according to 
(4)-(5),  the geometric phase for the cyclic state I~/,(t)) is 

N 

f l = 2 z ( H ) - E ~  Z n]cn] 2->0 (9) 
AE n= 1 

Notice that the component e 0 of I~(0)) along the ground state leo) is not 
explicitly present in (9). If  fl is restricted (modulo 2r 0 to the interval [0, 2~r), 
then equation (9) admits the following interpretation: fl measures the 
"energy excess" (in dimensionless units) ( H )  above the nearest lower 
energy level E k (see Figure 1). If  E k is given and ]~(0)) is changed so that 
E~ < ( H ) <  Ek+l, then to the end fl = 0 corresponds cyclic states with 
( I - I ) = E  k [This includes in particular I~(0))=lEk)] .  To any other 
fl~(0, 2n) corresponds cyclic states with ( H ) ~ E  k and vice versa [here 
necessarily [~k(0) ) ~ lEe )]. 

One of the interesting systems with equally spaced energy eigenvalues 
for which our treatment can be applied is a spin j interacting with a 
constant homogeneous magnetic field B, where j > 0 can be either integer 
or half-integer. Suppose, for simplicity, that the magnetic field points in the 
z direction, B -  Bk. The spin Hamiltonian can be expressed as H = 
- ] . / J"  B - - ~ c J 3 ,  where ~ is the spin magnetic moment, J is the spin 
operator whose components satisfy [Jk, Jl] = ihekl~Jn, with k, l, n = l, 2, 3, 
and #B = coc > 0 is the precession frequency of the spin around k. We 
work in the basis {[j, m):  Ja[J, m )  = mhlj, m) ,  - j  <- m <-j}. Hence, 
d i m ( ~ )  = 2j + 1 = N + 1. Due to the minus sign in the Hamiltonian, the 
identifications AE = hOgc, Eo = -jhcnc, and [E, ) = [j,j - n )  with 0 -< n < 
2j = N are consistent with equations (6)-(9). Therefore, the system per- 
forms an evolution loop and so any spin state evolves in a cyclic way, with 
an associated geometric phase given by equation (9). This is true, in 
particular, for the spin j = 1/2. In this case, it has become a convention to 
express the generic initial state in terms of the spherical angles 0, ~o: 

[~b(0)) = e-~/2 cos(0/2)[1/2, 1/2) + e R~ sin(0/2)[1/2, - 1/2) 

As the ground state in our notation is [Eo) = [1/2, 1/2), the only coefficient 
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Fig. 1. Schematic representation of the N + 1 energy levels for a system with equally-spaced 
spectrum. If the geometric phase /3 is restricted to the interval [0, 2~), then it can be 
interpreted as an energy excess of the system with respect to its nearest energy level E~ (the 
nearest below) in dimensionless units. 

contributing to the geometric phase is cl = e iq'/2 sin(0/2). Therefore, by 
applying (9), the geometric phase becomes the usual one (Aharonov and 
Anandan, 1987) 

/~ = 2~z[c, [2 = 2~ sin2(0/2) = lz(1 - c o s  0) 

Moreover, as is well known, a problem involving just two energy levels can 
be treated as a fictitious spin 1/2 interacting with a homogeneous magnetic 
field (Moore,  1991; Seleznyova, 1993); hence, taking care in making a 
judicious identification of the parameters, the same formulas to evaluate its 
geometric phases may be applied. 

At this point, it is worth discussing a geometric interpretation applica- 
ble to systems with energy levels given by (6). It is easily understood for the 
spin-l/2 system of the previous example, for which the space of physical 
states (the projective space) coincides with the unit sphere S 2 on R 3. Any 
spin-l/2 state is precessing around the z axis, performing cyclic evolutions 
with a geometric phase which is, in general, distinct from zero. There are 
two states, however, for which the evolution is trivial: during the course of 
time they remain static at the north and south poles on S 2, and correspond 
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to the spin aligned along and in the opposite direction of the magnetic field. 
The geometric phase for both of them is zero. For a system with N + 1 
equally-spaced energy levels, however, we have at hand a more interesting 
(and more complicated) situation: now, instead of having two static points 
on S 2 there are N + 1 points remaining static under the evolution on 
(those associated to the [E, ), with N either finite or infinite). For each one 
of them the geometric phase is zero. Any other state will move across those 
points performing a more complicated (cyclic) evolution on ~ with a 
nonnull geometric phase (in general) which can be easily evaluated using 
equation (9). 

We proceed now to the analysis of another system having equally- 
spaced energy spectrum. It can be called the generalized oscillator (GO) 
because its energy levels are exactly the same as the ones of the harmonic 
oscillator Hamiltonian. The GO potentials were discovered by Abraham 
and Moses (1980) using the Gelfand and Levitan (1951) formalism and 
were generated by Mielnik (1984) using a generalization of the well-known 
factorization method (Infeld and Hull, 1951; see also Ferngmdez C., 1984). 
Because of its didactic value, we will point out some steps used in the 
generalized factorization to generate the GO potentials. We will work 
from now on in the coordinate representation with dimensionless units 
h = m = ~ 9 = l .  

The classical factorization method applied to the oscillator consists in 
expressing the Hamiltonian 

1 [ d 2 x2\  _ . ) (lo) 

as the two products 

1 1 
aa*=H+-~ ,  ata = H - - ~  (11) 

where a and a t are the ordinary ladder operators a = (1/x/~)(d/dx + x), 
a t = ( l/x/2)( - d / d x  + x) with [a, a t] = 1. The eigenfunctions and eigenval- 
ues of the harmonic oscillator can be constructed using the relations 

Ha t = a*(H + 1), Ha = a(H -- 1) (12) 

There is a normalized ground state r with eigenvalue E0 = 1/2 which 
satisfies a~ho(x) = 0 ~ ~h0(x) ~ e-X2/2, while the normalized eigenfunction 
~h,(x) associated to the eigenvalue E n -  n + 1/2 is related to the ground 
state through 

(at)" 
4,.(x) =  o(X) (13) 
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The generalized factorization method (Mielnik, 1984) consists in look- 
ing for more general operators 

d 

satisfying just the first one of relations (11): 

1 
b b * = H + ~  (15) 

Hence, the unknown function fi(x) obeys the Riccati equation 

fl, +/~2 = 1 + x  2 (16) 

whose general solution is 
e - x 2  

 (xl=x + +i e_,2dy, he r  (17) 

Now, the point is that the product b*b is no longer related to the harmonic 
oscillator Hamiltonian, but it leads to a new operator H;" 

1 
b*b = H~ - - (18) 

2 

where 

1 d 2 
H;~ = --~ dx-- 5 + V~(x) (19) 

with 

V~.(x)=-~--~x x +S~e_y2dy = x-~ 2+S~e_YZdy 2 (20) 

The requirement [2] > ,v/-~/2 assures that V;.(x) has no singularities. The 
relationships analogous to (12) provide the way to obtain the eigenfunc- 
tions and eigenvalues of H~: 

H~b* = b*(H + 1), Hb = b(H~ - 1) (21) 

Hence, the states On(x)=b*~bn_l(x)/~/n, n = 1, 2 . . . . .  are orthonormal- 
ized eigenfunctions of H~. with eigenvalues En = n + 1/2. However, the set 
{0,(x), n = 1, 2 , . . . }  is not yet a basis of L2(R). There is a missing unit 
vector Oo(x) which is orthogonal to all the vectors On(x), n = 1, 2 . . . . .  It 
turns out to be an eigenfunction of H~ with eigenvalue Eo = 1/2 satisfying 
bOo(x) = 0, and taking the form 

) Oo(x) oc exp -- /~(y) dy (22) 
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As the s e t  { O , ( x ) , n = O ,  1 , 2 , . . . }  forms a basis in L2(R), then 
{H~: [2 t > x/re/Z} is a family of  Hamiltonians distinct from the harmonic 
oscillator one but which has exactly the same spectrum as the oscillator 
has. In the limit [2 t ~ oe, the harmonic oscillator potential is recovered, 
V;~(x)-- .x2/2 when 121~ oe. 

All the relationships involving the evolution loops and the geometric 
phase [equations (6)-(9)]  can be applied to the GO Hamiltonian (19 ) -  
(20) with Eo = 1/2, AE = 1, z = 2n, q~ = --n, and N = oo. In particular, the 
geometric phase is/~ = 2rc((H~ ) - 1/2), and when applied to the wavefunc- 
tions of  the basis {0,(x), n = 0, 1, 2 , . . . }  we recover again/~ = 2n7~. Is there 
any other set of  generic states of the GO potential for which we can 
evaluate explicitly the geometric phase? The answer turns out to be positive 
when considering the family of  recently found "coherent" states for the GO 
Hamiltonian (Fermlndez C. et aL, 1994). Here, we will present some details 
of  its derivation [for work involving coherent states and their geometric 
phases see (Layton et al., 1990; Moore, 1991; Seleznyova, 1993; Benedict 
and Schleich, 1993; Giavarini and Onofri, 1989; Brihaye et al., 1990; 
Maamache et al., 1990)]. 

In the construction of  the coherent states of  H;., denoted as tz) with 
z~C,  we need to identify the "annihilation" and "creation" operators of  
the system. We have 

bO, (x)  oc ~ ,  _ 1 (x)  =~ abO~ (x) oc ~ ,  _ 2 (x)  =~ b *abO, (x)  oc On _ 1 (x)  

and an obvious choice is 

A = b*ab, A t = b t a t b  (23) 

The coherent states can be defined now as the eigenstates of  the annihila- 
tion operator A with eigenvalues z, i.e., A l z ) = z [ z ) .  Expressing Iz) in 
terms of  the basis {[0,), n = 0, 1, 2 , . . . } ,  and substituting explicitly that 
expression in the previous one, we find the following family of  "coherent" 
states (after normalization): 

1 0o z n 

Iz) = [0F2(1, 2; tzlS~.],~ =2o n.>-~[(~ + 1)!]1/210.+ 1> (24) 

where [0, ) is the ket representing the eigenfunction O,(x) and 0Fz( I, 2; y) is 
a generalized hypergeometric function defined by 

r(~)r(3) y" 
ot~2(~,/~; y) = .=o r(~ + n)r'(/~ + n) n! (25) 

with F( �9 ) the gamma function. To each value z r 0 corresponds one and 
only one coherent state. However, z = 0 is a doubly degenerate eigenvalue 
of  A with two orthogonal eigenvectors which will be denoted 10o) and 
[z = 0)  = t0s ). By choosing an appropriate measure in the complex plane, 
it can be shown that the set {I0o), lz)} is complete in oug. 
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The relationships presented so far are sufficient for our purpose of 
evaluating the geometric phase. To this end, we need to find the expected 
value of HA in the state Iz). A direct calculation leads to 

I oF2(l, I; )z} 2) (26) 
(Ha) = (z{H~ Iz> = ~ + 0F2(l, 2; ]zl' ) 

Finally, substituting (26) in the equation for fl, we obtain the following 
expression for the geometric phase flGCS of the generalized coherent state: 

flGCS = 2= oF2(1, 1; [z]2_~) (27) 
oF2(1, 2; }z[ 2) 

To have an idea of the behavior of flGCS, we plot it versus Re(z) x Im(z) in 
Figure 2. As we can see, the geometric phase is independent of 2 and 

,. '..<'/ I pscs 

0 

30 

20 

i0 

0 
~I( 

l ~  5 I0 

Fig. 2, The geometric phases associated to the standard coherent sta(es of  the harmonic os- 
cillator (flscs) and the coherent states of the generalized oscillator (flGCS) as functions of  the 
complex variable z. The minimum values of  fists and flocs are 0 and 2~, respectively, both at 
z = 0. The missing sections in both surfaces were removed to show the behavior close to the 
minimum, 
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depends  on z in a quite different way c o m p a r e d  with tha t  o f  a s tandard  
coherent  state (SCS) o f  the ha rmonic  oscillator, for  which /~scs = 2rr[zl 2 
(Seleznyova,  1993; Benedict and Schleich, 1993) (see also Figure 2). This 
occurs because the generalized coherent  states discussed in Fernandez  C. et 
al. (1994) do not  tend to the s tandard  ones when 2 ~ o0 even though the 
generalized potent ia l  tends to the ha rmonic  oscillator potent ia l  in this limit. 
A deeper  analysis shows that  the difference rests on the fact that  in this 
limit the annihi lat ion opera to r  A ~ - =  l i m ~ . ~  A = ata  2 is distinct f rom the 
s tandard  one a. The  generalized coherent  states, however ,  could be useful 
in future  appl icat ions  because the p roduc t  o f  the uncer ta inty  o f  the .~ and 
t6 opera to r s  for  these states is a lmos t  m i n i m u m  in this limit, 1/2 
liml~l_, ~ A.~ A/~ -< 3/2. The  quest ion o f  whether  or  not  there is a family o f  
coherent  states o f  Ha tending to the s tandard  ones when 2 ~ ~ ,  the 
geometr ic  phases  included, is open.  
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